Weighted Szeged Index of Graphs
نویسندگان
چکیده
The weighted Szeged index of a connected graph G is defined as Szw(G) = ∑ e=uv∈E(G) ( dG(u) + dG(v) ) nu (e)n G v (e), where n G u (e) is the number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. In this paper, we have obtained the weighted Szeged index Szw(G) of the splice graph S(G1, G2, y, z) and link graph L(G1, G2, y, z).
منابع مشابه
Weighted Szeged Index of Generalized Hierarchical Product of Graphs
The Szeged index of a graph G, denoted by S z(G) = ∑ uv=e∈E(G) nu (e)n G v (e). Similarly, the Weighted Szeged index of a graph G, denoted by S zw(G) = ∑ uv=e∈E(G) ( dG(u)+ dG(v) ) nu (e)n G v (e), where dG(u) is the degree of the vertex u in G. In this paper, the exact formulae for the weighted Szeged indices of generalized hierarchical product and Cartesian product of two graphs are obtained.
متن کاملOn the revised edge-Szeged index of graphs
The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...
متن کاملComputing Szeged index of graphs on triples
ABSTRACT Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Szeged index of G is defined by where respectively is the number of vertices of G closer to u (respectively v) than v (respectively u). If S is a set of size let V be the set of all subsets of S of size 3. Then we define t...
متن کاملWeighted Szeged Indices of Some Graph Operations
In this paper, the weighted Szeged indices of Cartesian product and Corona product of two connected graphs are obtained. Using the results obtained here, the weighted Szeged indices of the hypercube of dimension n, Hamming graph, C4 nanotubes, nanotorus, grid, t−fold bristled, sunlet, fan, wheel, bottleneck graphs and some classes of bridge graphs are computed.
متن کاملThe Topological Indices of some Dendrimer Graphs
In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.
متن کامل